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Mixing produced by Rayleigh-Taylor instability at the interface between two layers is 
the subject of a comparative study between laboratory and numerical experiments. The 
laboratory experiments consist of a layer of brine initially at rest on top of a layer of 
fresh water. When a horizontal barrier separating the two layers is removed, the 
ensuing motion and the mixing that is produced is studied by a number of diagnostic 
techniques. This configuration is modelled numerically using a three-dimensional code, 
which solves the Euler equations on a 1803 grid. A comparison of the numerical results 
and the experimental results is carried out with the aim of making a careful assessment 
of the ability of the code to reproduce the experiments. In particular, it is found that 
the motions are quite sensitive to the presence of large scales produced when the barrier 
is removed, but the amount and form of the mixing is not very sensitive to the initial 
conditions. The implications of this comparison for improvements in the experimental 
and numerical techniques are discussed. 

1. Introduction 
Rayleigh-Taylor instability is one of the prime candidates for mixing between fluids 

of different densities. It occurs when the fluids are arranged so that higher pressure 
occurs in the less dense fluid. The simplest case to consider is that of a fluid in a 
gravitational field in which the density decreases in the direction of gravity. Then with 
the dense fluid above the less dense fluid, gravitational instability ensues in the form of 
Rayleigh-Taylor instability. This mechanism occurs in stably stratified fluids when 
density surfaces are overturned such as in a large-amplitude internal wave. Many other 
examples exist both in geophysical and in industrial applications when other forms of 
acceleration may produce the required pressure gradients. In most of these practical 
circumstances the instability that is produced occurs at sufficiently fast speeds that the 
flow develops on a range of lengthscales and rapidly becomes turbulent. If the fluids 
are miscible, the generation of turbulence will promote mixing at a molecular level. 
This paper is part of a sequence of papers which have been written to investigate these 
effects. The overall aim of this study has been to investigate the mixing process 
produced by Rayleigh-Taylor instabilities, with a view to providing an explanation for 
the observed mixing rates in these flows. 

The configuration chosen for the experimental study is the instability produced 
between two layers of fluid with the dense fluid above, separated by a horizontal plane 
boundary. The instability is initiated by removing a barrier between the two fluids and 
allowing the gravitationally driven instabilities to occur. The fluids chosen were salt 
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solutions in water, and are therefore completely miscible, and the density ratios 
between the two fluids are close to unity. The global structure of the mixing zone was 
described in Linden & Redondo (1991, referred to hereafter as LR). These studies 
showed that the mixing region grew with a width which was proportional to gt2, where 
g is the acceleration due to gravity and t is the elapsed time, and the growth rate was 
determined for a range of density ratios. The development of small scales, which 
contribute to the mixing, was determined by measuring the fractal dimension of the 
interface along an iso-concentration line. It was observed that the fractal dimension 
increased as small scales developed, reaching a maximum value of 2.35, and then 
decreased again as the fluids overturned and the stratification became stable. The 
efficiency of the mixing process was also measured by evaluating the change in 
potential energy between the initial and final states. High values of the mixing efficiency 
were measured, and this was attributed to the fact that much of the mixing took place 
while the flow was unstably stratified. 

There have been many two-dimensional calculations of Rayleigh-Taylor instability. 
Early results were published by Harlow & Welch (1966) and Daly (1967). More recent 
calculations are described by Youngs (1984), Tryggvason (1988) and Kerr (1988). A 
number of articles have been published by Glimm and his co-workers (Chern et al. 
1986; Glimm et al. 1990); these papers used an interface tracking method and focused 
on the increase in the lengthscale associated with the mixing zone, due to interactions 
between bubbles of light fluid. 

Few simulations of Rayleigh-Taylor instability in three dimensions have been 
published. The growth of the instability from a single-wavelength initial perturbation 
has been considered by Dahlburg & Gardner (1990), Tryggvason & Unverdi (1990) 
and Town & Bell (1991). Three-dimensional calculations of turbulent mixing by 
Rayleigh-Taylor instability have been performed by Youngs (199 1). These calculations 
were for a range of density ratios and used mesh sizes up to 240 x 160 x 160. The results 
showed that the growth rate of the mixing zone was smaller than observed in the 
experiments reported in LR or in earlier experiments by Read (1984). Other aspects of 
the flow, such as the magnitude of the concentration fluctuations, were found to be in 
good agreement with the experimental observations of LR. 

There have been a number of previous experimental studies of Rayleigh-Taylor 
instability, which have concentrated primarily on the scale and growth of disturbances 
at the interface. These include Lewis (1950) and Allred & Blount (1953) using an 
air-water interface, while other experiments (e.g. Duff, Harlow & Hirt 1962 and 
Emmons, Chang & Watson 1960) have investigated some other aspects of 
Rayleigh-Taylor instability. The turbulent mixing regime, in which the width of the 
mixing zone is proportional to gt2, has been studied by Anuchina et al. (1978), Read 
(1984), Youngs (1989) and Rozanov et al. (1990). In LR we reported on experiments 
which concentrated on the mixing process, and this present paper is an extension of 
that work. As was mentioned above, the two fluids are miscible and separated by a 
horizontal barrier, and the removal of this barrier, which takes place through the 
sidewalls of the tank, causes a perturbation to the interface. A purpose of this present 
paper is to make detailed comparisons between the experimental results and 
calculations which include the effects of this initial perturbation. We shall show that the 
growth rate of the mixing zone is affected by the presence of the initial perturbation 
produced by the removal of the barrier for large times when it would have been 
desirable that the initial memory should have been forgotten. We also make detailed 
comparisons of the concentration fluctuations and amount of molecular mixing in the 
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presence and absence of the perturbation, and show how these results are not 
particularly sensitive to this perturbation. 

The layout of this paper is as follows. In $2 the experimental procedure and the 
numerical calculations are outlined. As these have been reported in considerable detail 
elsewhere (LR; Youngs 1991) only a brief description will be given here. In $3, the 
theory of single-wavelength Rayleigh-Taylor instability is reviewed, and used to assess 
the effect of the additional perturbation induced by barrier removal. Section 4 then 
gives a comparison of the qualitative structures of the flows that have been observed 
both in the experiments and in the numerical calculations. Quantitative comparisons 
of the results are given in $9 5 and 6 .  The global effects such as the mixing-zone growth 
rate, the volume fractions of the two fluids averaged across horizontal planes and the 
global mixing efficiencies of the process are compared in $ 5 ,  while local effects such as 
the concentration fluctuations, the mixing on small scales, and fractal analysis are 
described in $6. Some more detailed numerical results corresponding to the ideal 
experiment in which the perturbation caused by the barrier is absent are given in $7. 
The summary and conclusions are given in $8.  

2. Experiments and the numerical code 
The experiments were carried out in a Perspex tank 500 mm deep, 400 mm long and 

200 mm wide. The tank had a removable, horizontal aluminium barrier 1.5 mm in 
thickness, which separated a layer of brine, density pl, from a layer of fresh water, 
density p2, below. The two layers of fluid were initially at rest, and the experiment was 
initiated by sliding the aluminium barrier horizontally through a slit in one endwall of 
the tank. The details of the experimental set-up and, in particular, the measurement 
techniques are described in detail in LR, and the interested reader is referred to that 
paper for further information. Figure 1 shows a schematic diagram of the tank used 
in the experiments and the notation used to describe the advance of the 
Rayleigh-Taylor front. 

The experiments were conducted with a range of Atwood numbers A = 

( p l  -pz)/(pl  +pz) from 1 x If the mixing zone width is proportional to 
gt2,  then velocities are proportional to gt and the Reynolds number Re increases with 
time t like t3 .  For the range of Atwood numbers used here Re reaches a value 0(103) 
by the time the first upper-layer fluid reaches the bottom of the tank. The use of salt 
in water implies that the Schmidt number Sc is high, of O(103). 

Measurements of the amount of mixed product were obtained using the colour 
change of a pH indicator to determine the extent of a chemical reaction. The lower 
layer contained an acid (HC1) and the pH indicator phenolphthalein which was initially 
colourless. The upper (also colourless) layer was set at a required high pH by the 
addition of an alkali (NaOH). When mixing between the upper and lower layer fluids 
occurs and the pH of the mixture exceeds the threshold for phenolphthalein (pH 
9.5), the indicator turns pink. The intensity of the pink colour is a function of the 
concentration of phenolphthalein in the mixture. By suitable choices of the pH in the 
lower layer it is possible to adjust the fraction of upper-layer fluid that mixes with the 
lower layer in order to exceed the threshold pH. In order to ensure a rapid colour 
change, the pH of the upper layer was set to a high value (pH = 12). The concentration 
of phenolphthalein was then determined by measuring the reduction in intensity of 
light passing through the tank. Light intensity measurements are made using the 
automated image processing system DigImage. The reaction between the indicator and 

to 5 x 
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Plate - 

FIGURE 1. A sketch of the experimental configuration. The symbols are defined in the text. 

NaOH is extremely fast (the Damkohler number, which is the ratio of the advective 
timescale of the flow to the reaction time, is very large) and so is limited only by the 
rate of mixing of the two constituent parts (see Caldin 1964; and RL). 

The numerical technique used here is the same as that described by Youngs (1991). 
An explicit compressible method is used to solve the Euler equations plus an advection 
equation for the mass fraction of fluid 1. The experiments, in which the flow is 
incompressible, are simulated by choosing the initial sound speed high enough to 
eliminate any dependence on Mach number. In the problem considered here there is an 
initial discontinuity in the density distribution. It is therefore important to choose a 
numerical method which can cope with discontinuities. Hence advection of all fluid 
variables is calculated by using the monotonic method of van Leer (1977). This gives 
a robust numerical method with many essential properties, for example mass fractions 
remain in the interval (0,l) and the fluid density stays in the interval (p2 ,  pl). Spurious 
buoyancy-generated turbulence is thereby eliminated. The need to use a monotone 
advection scheme for this reason has also been recognized by Grabowski & Clark 
(1991) in simulations of convective clouds. 

The laboratory experiments described here used miscible fluids and a high degree of 
molecular mixing was observed. Consequently, the numerical method needs to include 
a mechanism for the dissipation of both density and velocity fluctuations due to small- 
scale eddies. In large-eddy simulations, such as those of Moin & Kim (1982), a non- 
dissipative numerical technique is used in conjunction with a sub-grid eddy viscosity to 
represent the effect of the unresolved scales. In the present calculations, the 
monotonicity constraints in the advection method provide the required dissipation for 
both density and velocity fluctuations. No additional dissipation is needed. The 
nonlinear dissipation inherent in the numerical scheme acts at a lengthscale of order of 
the mesh size; the effect on the resolved scales is nqligible. Hence there is a similarity 
with the use of hyperviscosity in spectral methods for direct numerical simulation of 
turbulent flow (see, for example, Passot & Pouquet 1988). Results for homogeneous 
turbulence show that a k f  Kolmogorov spectrum is obtained up to a wavenumber 
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k = 2x/A,, where A, is about six mesh widths. The spectrum decays more rapidly than 
k-i above this point. For the present application an example of the power spectrum 
for concentration fluctuations is shown in figure 14. The dissipation inherent in the 
numerical scheme is clearly sufficient to prevent any piling-up of power levels at high 
wavenumbers. As for homogeneous turbulence, the spectrum is consistent with a k-i 
flow up to the point where the wavelength is about 6 mesh widths. Large-eddy 
simulation with the use of a sub-grid model may give a better representation of a k-: 
spectrum than this. However, the monotone advection scheme has a number of other 
advantages, as already noted. 

The numerical Schmidt number, Sc, is of order unity whereas in the experiments 
Sc - lo3. If there is dependence of the results on the Schmidt number, it cannot be 
resolved in the numerical calculations. At low Reynolds number, a high Schmidt 
number will inhibit molecular mixing. However, at high Reynolds number the 
generation of fine scales in the turbulence suggests that molecular mixing may be less 
sensitive to the Schmidt number. The experimental results obtained with the chemical 
indicator (see $6.2) show that a high degree of molecular mixing has occurred by the 
time the mixing zone has reached the top of the tank. Consequently, we infer that 
comparison of the molecular mixing in the numerical calculations and the experiments 
is reasonable, although further investigation of this point is desirable. 

The initial set-up for the numerical calculations is the same as that used by Youngs 
(1991). The computational domain is 0 < x , y  < H,  --iH < z < i H  where H is the 
height of the tank. Fluid of density p1 fills the upper half of the box, z > 0, and fluid 
of density p2 < p1 fills the lower half. The boundary conditions are zero normal velocity 
at the top and bottom of the tank, and periodic behaviour in the x- and y-directions. 
The density ratio used is pJp2 = 1.5. This value, which is higher than in the 
experiments, is chosen to ensure that the initial density difference is large compared to 
any small density variations within each fluid arising from the use of finite Mach 
number. Within the limitations of the Boussinesq approximation, comparison can be 
made with experiment by choice of an appropriate timescale. 

A random initial interface perturbation is included in all the calculations. This 
consists of a sum of Fourier modes with minimum wavelength, Amin, four times the 
mesh width, Ax. In the first calculations performed, the standard deviation of the 
random perturbation was (T = 0.08Ax = 4 x lOV4H, which is just sufficient to trigger the 
gt2 growth of the mixing zone (see $ 3 ) .  Two different mesh sizes, 903 and 1803, have 
been used and the effects of reducing the mesh are examined. 

Removal of the barrier induces a long-wave two-dimensional perturbation, as is 
evident from the flow visualization, figure 2(c). It is shown in the next section that this 
perturbation should significantly enhance the mixing rate, and it therefore needs to be 
included in the simulation. The approximate effect of barrier removal is represented by 
an extra perturbation z = <(x) given by 

[(x) = a,, cos (2xx/h),  

with values for the wavelength h = H/6 = 83 mm and the amplitude a, = 0.01H or 
0.02H chosen by visual comparison with the experiments. For these initial amplitudes 
the long-wave perturbation grows quickly and the results are not very sensitive to the 
change in a,. Barrier removal also creates small-scale turbulence which has been 
modelled in some of the calculations by increasing the standard deviation of the 
random perturbation to c = 0.002H. 

Inclusion of the long-wave perturbation represents the main effects of barrier 
removal, which are the early appearance of large-scale structures and an enhanced 
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mixing rate. However, the experimental situation is complex and difficult to model 
exactly. In the experiments the long-wave perturbation varies in amplitude in the 
direction of barrier removal. The finite time taken to remove the barrier has some effect 
on the results, and circulation is induced in the two halves of the tank which influences 
the late-time overturning motion of the two fluids. The long-wave perturbation 
included in the calculations gives rise to large-scale features that are more coherent 
than in the experiment. As the observed structures are more irregular, some aspects of 
the experiment resemble more closely the calculations using only the random 
perturbation. The experimental data are compared to both types of calculation, i.e. 
with and without the long-wave perturbation. The aim of this paper is to show that a 
combination of laboratory and numerical results may be used to investigate the mixing 
process rather than to seek exact agreement between simulation and experiment. 

3. Theoretical picture 
The dominant lengthscale should increase as the mixing zone grows, as described for 

example by Youngs (1984). For the present purposes the mixing zone may be thought 
of as the region containing fluid originally from both layers, and the width is its vertical 
extent. A more precise definition is given in 54. The structures corresponding to the 
dominant wavelength at a given time may have evolved either (a)  from the nonlinear 
interaction between smaller structures, or (b) directly from an initial perturbation at the 
corresponding wavelength. If (a) applies then it is likely that loss of memory of the 
initial conditions will eventually occur. Dimensional reasoning then suggests that, for 
the high-Reynolds-number case, the mixing zone should be described by a similarity 
solution with lengthscale proportional to gt2 (see Belen’kii & Fradkin 1965 ; Anuchina 
et al. 1978; Youngs 1984). The width 6 of the mixing zone should then be given by 

8 =AP1/Pz)gt2. (3.1) 
The experiments of Read (1984) and Youngs (1989), in which no deliberately imposed 
initial perturbations were present, confirmed equation (3.1). The depth to which the 
mixing zone penetrated the denser fluid 1 was found to be given by 

gt2, P1- Pz h, = a- 
PI + Pz 

where a was approximately 0.06 at all density ratios. If h, denotes the depth to which 
the mixing zone penetrates fluid 2, then hz/hl was shown to be a slowly increasing 
function of the density ratio pl/pz.  In the Boussinesq limit considered in the present 
experiments, i.e. pl /p2  close to unity, hz/hl = 1. The numerical calculations which use 
p1/p2 = 1.5 give hJh, z 1.1, a slight deviation from this Boussinesq limit. 

In the Boussinesq approximation, the equation for fluid velocity includes a buoyancy 
source S = (p-po)g/po where po is a reference density. If po is set equal to t ( p l  +p2),  
then at the start of the experiment S = Ag in the upper layer and S = - Ag in the lower 
layer, where A = (p, -pz)/(pl +pz) is the Atwood number. The experimental behaviour 
is determined by the product Ag and results presented below are given in the terms of 
non-dimensional time units 7 defined by 

r = (Ag/H)i t .  (3-3) 
If (3.2) applies, then the mixing zone just fills the tank when h, = +If, i.e. when 7 = 

1/(2a)f z 2.9. After this time, overturning of the two fluids occurs, a stable stratification 
is set up and eventually density and velocity fluctuations decay to zero. Experimental 
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and numerical results are presented up to 7 = 10, in order to investigate the late-stage 
behaviour during both the unstably and stably stratified regimes. 

As noted in the previous section, removal of the barrier in the experiments induces 
a large perturbation with wavelength h - 80 mm and initial amplitude a, about 
10 mm. In this case the dominant structures evolve directly from the initial perturbation 
rather than from the interaction between shorter-wavelength modes, at least in the 
initial stages. 

We first consider the growth of a two-dimensional perturbation. Layzer (1955) 
showed that for an initial perturbation 

[(x) = a, cos (27cx/h), 

at density ratio pJp2 = GO, i.e. A = 1, the bubble penetration, h,, both in the linear and 
nonlinear regimes, could be represented by the model equations 

dhJdt = V, 

where E = exp [ - 6nh,/h]. 

The constant C,, which may be thought of as a drag coefficient, was equal to 6n. At 
late times, bubbles rise with constant velocity 

in agreement with the experimental results of Lewis (1950). Two-dimensional 
calculations of the growth of a single-wavelength perturbation show that at the end of 
the linear phase for p,/)02 < 1.5, bubbles rise with velocity 

Although, strictly speaking, Layzer's theoretical model is only applicable to the case 
A = 1, equation (3.4) may be modified empirically for low Atwood numbers (i.e. in the 
Boussinesq limit) by replacing g with A g  in (3.4) to give 

and taking the value of the drag coefficient to be 

The model then gives the appropriate late-time bubble velocity, V,, and also the 
correct small-amplitude behaviour : 

(3.4) I ( 2  + E )  d V/dt = g( 1 - E )  - C ,  V2/h ,  

V, = (gh/C,)k = 0.23(gh);, (3.5) 

V, - 0.29(ghA):. 

( 2  + E )  d V/dt = Ag( 1 - E )  - C ,  V 2 / h ,  

C, = Agh/  Vz = 1/0.292 - 11.9. 

d2h,/dt2 = (2nAg/h)  h,. 

An alternative model for the growth of a single-wavelength perturbation was given by 
Glimm et al. (1990). The model used here is somewhat simpler and is considered to be 
sufficiently accurate for the present purpose. 

Now, suppose that the initial perturbation consists of small random perturbations, 
which on their own would lead to a growth of the mixed layer given by (3.2), plus a 
long-wave perturbation of wavelength h and amplitude a,. The additional perturbation 
should enhance mixing if the values of h, calculated from (3.4) exceed those given by 
(3.2). In order to estimate the effect of the additional perturbation, (3.4) have been 
integrated up to the time when h, = $A and the quantity 

a* = (h, -aa,)/Agt2, 

is found. For a given density ratio, a* depends only on a,/h. For low Atwood number 
the values calculated are shown in table 1.  
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(a> (b) 

z= 0.5 

z= 1.0 

z= 1.5 

z = 2.0 

FIGURE 2(a,  b). For caption see facing page. 
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z= 0.5 z= 1.5 

z= 1.0 z= 2.0 

FIGURE 2.  Perspective views of the interface in the upper half of the tank at dimensionless times T = 
0.5, 1.0, 1.5 and 2.0. For the numerical calculations without (a) and with (b)  the long-wave 
perturbations, surfaces corresponding tofi = 0.99 are shown. For the experiments (c) the lower layer 
is made visible by the addition of a small amount of milk. 

aolh 
0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.10 

a* 

0.035 
0.041 
0.051 
0.061 
0.074 
0.093 
0.11 

TABLE 1. The growth rate a* as a function of the steepness a,/h 
of the initial long-wave perturbation 

The estimate of a, obtained from the experiments of Read (1984) and Youngs (1989), 
is a = 0.06. In this case table 1 shows that the additional perturbation should 
significantly enhance the mixing rate if a,/h > 0.01. It is likely that the additional 
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perturbation would then influence results until the width of the mixing zone is a few 
times A. 

For the present experiment, the perturbation introduced by removal of the barrier 
has a,/h - 0.06. Such a perturbation should clearly have a significant effect on the 
results, leading to an expected increase in the growth of the mixing zone compared with 
the case when the long-wave disturbance is absent. 

4. Qualitative observations 
Figures 2(a) and 2(b) show two sequences of perspective views of the interface 

obtained from the 1 803 numerical calculations. The surfaces shown correspond to 
contours off, = 0.99, where 

denotes the fraction by volume of the denser fluid 1. Only the upper half of the tank 
z > 0 is shown. For the calculation without the long-wave perturbation, small bubbles 
form at early times. The diameter of these bubbles is between hmin and 2hm,,, i.e. their 
size is set by the mesh resolution. As time proceeds, the characteristic size of the 
bubbles increases. Figure 2(b) shows the effect of including a long-wave perturbation 
(a, = 0.01H, h = H/6). At early times the two-dimensional structure arising from the 
long-wave disturbance clearly dominates the flow. Perturbations grow on the six ridges 
and by 7 = 1.5 each ridge has developed into three-dimensional disturbances, although 
remnants of the initial two-dimensional structure can be seen. However, the mixing 
zone at this time is significantly greater than in the calculation without the long-wave 
perturbation. 

A corresponding set of photographs taken from the laboratory experiments is shown 
in figure 2(c). These show a set of perspective views of the top of the lower layer as it 
penetrates into the upper layer. A small amount of milk has been added to the lower 
layer which shows up white against the dark background. The views, therefore, 
correspond to the extreme edge of the advancing lower layer and are equivalent to 
those shown in figure 2(b) from the numerical calculations. (The small, almost vertical, 
streaks are rising bubbles released from underneath the plate as it is removed.) 

The production of a two-dimensional disturbance by the removal of the plate is 
clearly seen at early times (7 = 0.5) in figure 2(c). As the lower layer penetrates further 
this structure persists, although it begins to be disrupted by smaller-scale three- 
dimensional motions (see figure 2 c  at 7 = 1.0, 1.5, respectively). At later times (7 = 2.0) 
the motion appears to be quite three-dimensional with thermal-like structures rising 
from the lower layer. At this stage there still appears to be some residual evidence of 
the initial two-dimensional perturbation, but the three-dimensional structures have 
begun to dominate the appearance of the advancing front. 

Transition to three-dimensional flow occurs around 7 = 1.5 both in the numerical 
calculations and in the experiments. It is also clear from figure 2(c) that further small- 
scale structures grow on the three-dimensional disturbances. Fractal analysis of these 
structures has been carried out and are compared to the numerical calculations in $6. 

f, = (P-P2)/(P1-P2),  

5. Quantitative comparison : global properties 
Figure 3 shows the penetration of the lower layer into the upper layer as a function 

of time. The penetration depth h, is non-dimensionalized by the depth of the tank H 
and (h,/H)i is plotted against the scaled time 7. The value of h, is determined by taking 
the mean value of the 95 % concentration level of profiles such as those shown in figure 
5. The results in figure 3 (a)  show the numerical calculations both with and without the 
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FIGURE 3. A plot of (h, /H)i ,  where h, is the distance of penetration of lower-layer fluid into the upper 
layer, non-dimensionalized by the depth H of the tank, against the dimensionless time 7. (a) The 
numerical calculations for 903 mesh and 1803 mesh, respectively, with (+ , x ) and without (0, 0) the 
long-wave perturbation. The solid line is the best fit straight line to the 1803 mesh data with the long- 
wave perturbation. (b) The experimental results for a range of Atwood numbers: x , A = 3.3 x 
+, A = 9.5 x 0, A = 3.2 x The solid line is the 
same line as plotted in (a). 

0, A = 2.2 x 0, A = 4.3 x 

long-wave perturbation, as described in $2. We see from this figure that the presence 
of the long-wave perturbation significantly enhances the growth of the mixed region 
over the full depth of the tank. The results involving the long-wave perturbation are 
insensitive to the mesh size. This is because the long-wave perturbation, which has a 
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0.5 - 

0.4 - 

(2) 0.3 - 

0.2 - 

0.1 - 

I 

0 
I I I 

1 2 3 
z- z, 

FIGURE 4. The data shown in figure 3(b) plotted against 7-7,,, where the virtual time origin 7,, is 
defined in the text. 

dominant effect on the mixing rate, is well resolved by the numerical mesh. It is seen 
that a straight line fits the data well, with the possible exception of very early times. 

On the other hand, the growth without the long-wave perturbation shows 
dependence on the mesh size. In this case the lengthscale associated with the turbulent 
mixing zone increases in proportion to t2 .  It is inevitable that the early-time behaviour 
is poorly resolved by the numerical mesh. The effect of mesh size will be discussed in 
detail in $7. It is found that, at the start of the calculation, when the inertial range 
cannot be resolved, dissipation is underestimated and the growth rate is too high. The 
high initial growth rate persists for a longer time in the calculation with the coarser 
mesh. Hence mixing is more rapid with a coarser mesh. The results of 97 show that the 
turbulent mixing zone is well resolved when h, is 50 meshes. In the fine-mesh 
calculation, h, reaches 90 mesh widths. The mixing process should then be well resolved 
except at early times. 

Figure 3(b) is a selection of the experimental points for a decade variation of the 
Atwood number from 3.3 x to 4.3 x lop2. Also shown in this figure is the growth 
from the numerical model with the long-wave perturbation. At later times the 
experimental results also fall on straight lines when plotted against 7, indicating that 
the growth of the region of interpenetration of the two layers is in an approximate 
similarity phase (see LR). The slopes, and hence the growth rates, are in agreement 
with the numerical calculation when the long-wave perturbation is included. 
Comparison with figure 3(a) shows that the calculations in the absence of the long- 
wave perturbation significantly under predict the observed growth rate throughout the 
growth of the mixing region. A time origin 70 may be obtained by fitting (using a least- 
squares fit) a straight line to the data of (h,/H)i against 7, and determining the value 
70 at which the line intersects the  axi is. In figure 4 (and all subsequent figures), the data 
are plotted against ~ - 7 ~ .  This procedure collapses the data and hence is an effective 
way of parameterizing the initial effects of the plate removal. The value of 70 can be 
thought of as representing the effect of the finite time taken to remove the plate and 
for the time taken to reach the similarity growth given by (3.2). From these data we 
estimate a = 0.044f0.005. This value is smaller than we had determined from our 
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FIGURE 5. Concentrationx of upper-layer fluid averaged over horizontal planes as a function of 
depth, at selected times ~ - 7 ~  = 1.0, 1.5, 2.0, 2.5,  3.0, 4.0, 5.0 and 10.0 during the evolution of the 
flow. The concentration has been normalized so that the initial concentration of the upper layer is 

= 1. The numerical results are shown in (a) without (b) with the long-wave perturbation. The 
experimental results are shown in (c). 
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earlier experiments (LR) and we attribute this difference to the use of the virtual time 
origin in the present case. It is very difficult to obtain unequivocal fits to data of the 
type presented in figure 4, particularly when a virtual origin is needed to collapse the 
data. Hence, this value of a should be treated with caution, but it is we believe the 
estimate that is most useful to compare with the numerical results as these have been 
analysed in the same way. 

of upper-layer fluid averaged over horizontal 
planes as a function of the depth at selected times during the evolution of the flow. The 
numerical results are shown in figures 5 (a)  and 5 (b), and the experimental results are 
shown in figure 5(c). The experimental values are obtained by measuring the 
absorption of light through a passive dye initially in the upper layer only (see $2). The 
concentration has been normalized so that the initial concentration of the upper layer 
is & = 1 .  In order to obtain sufficient vertical resolution, the experimental 
measurements were restricted to part of the lower layer, -0.3 < z / H  < 0. The growth 
of the penetration region of upper-layer fluid shown in figure 4 is clearly seen from 
these measurements. At T - T ~  = 1.5 the numerical results including the long-wave 
perturbation (figure 5b) yield a profile that is not monotonic. This feature is a result 
of large blobs of upper-layer fluid penetrating into the lower layer (and vice versa). As 
mixing occurs these features decrease and the horizontally averaged concentrations 
become monotonic with depth. This result is in contrast to the experimental 
measurements, which show that the profiles remain monotonic at all times. The reason 
for this discrepancy seems to be that the simple form used to represent the long-wave 
perturbation in this simulation is more coherent than in the experiment. At 7-7,, w 3 
the upper layer has penetrated to the bottom of the tank (see also figure 4). It is 
important to remember though that the flow is still unstably stratified, but with a much 
more uniform mean stratification than at the start of the experiment. At later times the 
flow becomes stably stratified as the densest fluid reaches the bottom of the tank. Stable 
stratification is apparent when T - T ~  w 5,  and there is little subsequent change in the 
profile. 

The fact that the final state, after all motion within the tank has ceased, is one in 
which the density stratification is stably stratified shows that the fluids do not mix 
completely. If mixing were complete the density throughout the tank would be 
uniform. Since the initial and final potential energies of the system can be determined 
from measurements, it is possible to determine the fraction 7 of the initial available 
potential energy which is used to mix the fluids. This ‘mixing efficiency’ 7 was 
measured as a function of the Atwood number A in LR and the value was found to 
increase with increasing A ,  attaining a value of 7 = 0.35. Figure 6 shows the calculated 
values of the box-averaged kinetic and potential energy loss as a function of the time 
7 - ~ ~ .  Initially, both the kinetic and potential energy loss increase with time until, at 
about ~ - 7 ~  = 6, the potential energy stays roughly constant and the kinetic energy 
decreases. The constant value of the potential energy results from the fact that the 
stratification is no longer changing, and the kinetic energy decays due to dissipation. 
Similar results are obtained when the long-wave perturbation is present, although there 
is a decrease in both the maximum potential energy loss and kinetic energy achieved. 
The mixing efficiency 7 is defined as 

Figure 5 shows the concentration 

7 = l-P/Pmaz? (5.1) 

where P is the final potential energy loss and Pmaz is the change in potential energy if 
the fluids interchange positions without any mixing (i.e. all the upper-layer fluid 
eventually occupies the lower layer, and its density is unchanged). The values of 7 for 
the cases shown in figure 6 are 0.48 (random initial perturbation) and 0.47 (with long- 
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FIGURE 6. Total kinetic energy (crosses) and change in potential energy (circles) plotted against 
dimensionless time 7 - T,,, for numerical calculations with (small symbols) and without (large 
symbols) the long-wave perturbation. 

wave perturbation). These results are both significantly higher than the laboratory 
values. Large-scale overturning motions, which may arise from the circulation induced 
by the removal of the barrier, were observed in the laboratory experiments at later 
times. These motions may have reduced the mixing efficiency in the experiments. 

6. Quantitative comparison : local properties 
6.1. Concentration Jluctuations 

Concentration fluctuations were measured by conductivity probes at fixed positions in 
the tank. Examples of the records from these probes and discussion of the performance 
of the probes may be found in LR. Here we present some results from these 
measurements and compare them with the equivalent results from the numerical 
calculations. 

The r.m.s. concentration fluctuation r ( ~ )  is given by 

where p ( ~ )  is the density measured at a point and 

,5 = p ( ~ ' ) d ~ '  

is the time running mean of the density. The value of the averaging time was chosen 
to be AT = 0.66, and the results are insensitive to small variations about this value (see 
LR). 

Figure 7 shows a, which is the horizontal average of r ( ~ )  at z = 0.05 above the mid- 
plane of the tank, as a function of time. The numerical results (figure 7 a )  are averages 
over an array of 8 x 8 coplanar probe positions. The experimental results (figure 7b)  are 
obtained by ensemble averages over 10 experiments each of which contain five 

s-"' T - ~ A T  
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FIGURE 7. The r.m.s. concentration fluctuation @(T) plotted against T - T ~ .  The numerical calculations 
are shown in (a) with those including the long-wave perturbation shown as the dashed curve. The 
experimental results, shown as a range corresponding to one standard deviation either side of the 
ensemble average, are given in (b). 

measurement positions in the plane, and one standard deviation either side of the 
average values are shown. Experiments and numerical simulations both give peak 
values for @ of about 0.2, although the peak values are achieved somewhat later in the 
experiments. There is approximate agreement for the timescale of the decay of the 
concentration fluctuations. 

Figure 8 shows smaz, the ensemble of the plane averages of the maximum r.m.s. 
concentration fluctuation determined from (6. l), at different heights above the initial 
interface. There are significant differences between the calculations with and without 
the long-wave perturbation, especially near the interface where larger values are 



Molecular mixing in Rayleigh-Taylor instability 

0.5 7 

113 

0.4 

0.3 
- Z 
H 

0.2 

0.1 

0 0.1 0.2 0.3 0.4 0.5 

FIGURE 8. The maximum r.m.s. concentration fluctuation amaz as a function of height. The 
experimental results (0) are shown with dashed lines are one standard deviation either side of the 
mean value. The numerical results are shown for the random initial perturbation (O), and with the 
addition of the long-wave perturbation ( x ). 

obtained when the long wave is included. This increase implies less mixing 
(intermingling of two fluids without mixing would give amax = 0.5) and is consistent 
with the observations of the mass fraction given in figure 5 which suggest that the initial 
perturbation is too coherent in this case. Both sets of numerical results lie within the 
experimental results, although better agreement is obtained without the long-wave 
perturbation. 

The concentration gax, which corresponds to the ensemble of plane averages of 
maximum proportion of lower-layer fluid recorded at a fixed position in the upper 
layer during the course of the experiment, and the corresponding quantity from the 
numerical calculations is shown in figure 9. The values have been normalized so that 

where pmin(~) is the minimum density recorded at the given height. If undiluted lower- 
layer fluid passes the measurement point (which is in the upper layer) then gax = 1. 
On the other hand f l a x  = 0 when no lower-layer fluid passes the measurement 
position. 

The variation with the long-wave perturbation is small, and both are consistent with 
the experimental data. The agreement with the experiments is excellent near the 
interface, but the theoretical values underestimate the measurements of greater 
distances. The experimental results suggest that gax attains a reasonably constant 
value of about 0.3. This result is consistent with the detailed observation given in RL 
that the mixing takes place around the edges of the penetrating parcels of fluid, and 
that in the centre of the rising parcels only partial mixing has occurred. Nevertheless, 
by the time the parcels have reached the top of the tank, both the experiments and 
calculations show that significant mixing has taken place. 

Probability density functions (p.d.f.s) of the density fluctuations are shown in figure 
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fimx 
FIGURE 9. The maximum concentration flax of lower-layer fluid recorded in the upper layer, at 

various distances above the initial interface. The symbols are the same as in figure 8. 

10. The numerical results shown in figure 10(a) are obtained from concentration values 
in the centreplane at 7-7, = 2.5. The experimental p.d.f. shown in figure 10(b) is 
calculated at the centreplane of the tank, from concentration measurements over the 
time interval 1 < 7-7, < 3. The observed p.d.f. is closer to the numerical results 
without the long-wave perturbation. The coherent form of the long-wave perturbation 
gives rise to large-scale vortices in the centreplane which appear to enhance the decay 
of density fluctuations at z = 0 for the time shown here. These distributions show that 
there is little unmixed fluid in the middle of the mixing zone, and support the previous 
observations that significant molecular mixing takes place during this period. 

6.2. p H  measurement 
Measurements of mixed product were obtained by determining the reduction in light 
intensity resulting from the colour change of the pH indicator in the lower fluid. The 
results of these measurements are given in figure 1 1, which shows the concentration c 
averaged over the horizontal mid-plane of the tank as a function of 7-7, for a range 
of different values off,. This value off, gives the fraction of the two fluids that need 
to mix in order to produce the required pH for the colour change. For example,fo = 

0.1 means that 10 % of upper-layer fluid mixed with 90 % of the lower-layer fluid will 
produce a colour change. The results have been normalized so that complete mixing of 
all fluid in the tank gives a value of C = Co. In the numerical calculations the 
concentration of coloured product was defined by 

The calculated values without and with long-wave perturbation are shown in figures 
11 (a) and 11 (b), respectively, and the experimental results are given in figure 11 (c). 

Good general agreement is seen among all three sets of results. The value of C 
increases with 7 and asymptotes to C = 1 at large times. The initial rate of increase 
decreases with increasingf,, which reflects the fact that a larger fraction of the two 
fluids must mix in order to achieve the same colour change. The effects of the long- 
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FIGURE 10. Probability density distributions for the concentrationf, at the centreplane of the flow. 
The numerical results with (---) and without (-) the long-wave perturbation are shown in (a), and 
the experimental results are shown in (b). 

wave perturbation is to alter the initial behaviour (7 - 7, < 1) and to cause a reduction 
in C around 7 - 70 = 4. This reduction is not observed in the experimental results. We 
note also that for f, = 0.1 the mixing is complete at the mid-plane by about T - T~ = 
3 when the growing front has reached the bottom of the tank, consistent with the p.d.f. 
shown in figure 10. 

Figure 12 shows mixed product C forf, = 0.1 as a function of depth for the non- 
dimensional times 7-70 = 1, 2 and 3. The central plane of the tank could not be 
analysed owing to the shadow of the plate positioning slots and thus no experimental 
data are shown in that region in figure 12(c). The width of the mixed-product region 
agrees with that derived from the dye measurements, and there is on the whole good 
agreement with the numerical calculations although the experiments do not show the 
asymmetry of the numerical calculations. The calculation with the long-wave 
perturbation underestimates the amount of coloured product at 7-7, = 1 owing to the 
coherent nature of the initial perturbation. 

6.3. Fractal dimension 
The fractal dimension of the 90 YO iso-concentration contour was calculated from both 
the experimental and numerical results and the results are shown in figure 13. A box- 
counting algorithm was used and the fractal nature of the interface determined. It was 
observed, as can be seen in figure 13 (a), that the fractal dimension increases with 7 - 7, 

from 1.0 to a maximum value of 1.3 before decreasing again as stable stratification is 
established. (The fractal dimension determined by this method is a projection on to a 
plane, and so the actual fractal dimension is the quoted values plus one.) 

The development of the full fractal structure takes approximately 1 to 2 non- 
dimensional time units. At earlier times only the linear Rayleigh-Taylor scales and the 
disturbances imposed by the withdrawal of the plate are present. The fractal dimension 
then remains approximately constant until the influence of the bottom of the tank and 
the subsequent stable stratification reduces the dimension again. The laser-induced 
fluorescence visualization method is restricted by the width of the laser sheet. Thus we 
are unable to resolve motions on scales less than 2 mm, which exceeds the Kolmogorov 
scale. On the other hand, as noted earlier the smallest scales observed initially at the 
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FIGURE 1 1 .  The concentration C of mixed product averaged over the centreplane as a function of 
time. The concentration has been normalized by C,,, the value when all the fluid is completely mixed. 
Plots are shown for four values of fo (0.1, 0.2, 0.3, 0.4) the fraction of upper-layer fluid required for 
a colour change, for the numerical results without and with the long-wave perturbation in (a) and (b), 
respectively, and the experimental results in (c). 
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respectively, and the experimental results are shown in (c). 
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FIGURE 14. Power spectrum P(n) for concentration fluctuations at T = 3 f rop the numerical 
calculation without the long-wave perturbation. The line drawn corresponds to a k 7  spectrum, where 
k = (kE+ki)i. The arrow indicates the point where the wavelength 2x/k  equals 6 mesh widths. 

interface edge were larger than the 2 mm resolution scale suggesting that the flow is not 
fully developed until after some time. The non-dimensional time for the front to reach 
the bottom of the tank is approximately 37, but at least 17 is needed for the flow to 
become turbulent. This can be thought of as a transition between the initial growth 
dominated by the bubble competition and the fully turbulent regime. 
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The same box-counting algorithm was applied to the volume fraction isolines 
obtained from the numerical calculations. Elevation views were analysed at the non- 
dimensional times 1,2,3 and 4, giving values comparable with the experiments. Figure 
13 (b) shows the evolution of the fractal dimension in cases of both the random initial 
perturbations (circles) and with the long-wave perturbation (squares). There is good 
agreement between the numerical and experimental results in the early stages of the 
flow. The numerical results do not show the subsequent reduction in the dimension 
observed in the experiments. 

Figure 14 shows a power spectrum for concentration fluctuations obtained from the 
numerical results at 7-70 = 3. Two-dimensional Fourier analysis has been applied to 
each plane of numerical data and the resulting power values have been averaged in the 
vertical direction. The numerical results are consistent with a k-i spectrum at high 
wavenumbers. However, the power law cannot be conclusively verified as the 
numerical resolution is insufficient. This slope of the spectrum is consistent with the 
values of the fractal dimension measured at 7 - 70 = 3. 

7. Numerical simulation of the self-similar mixing process 
The consistency between the three-dimensional simulations and the experimental 

results give confidence in the numerical technique. However, the results clearly show 
that the long-wave perturbation significantly enhances the growth of the mixing zone, 
and the similarity solution in which loss of memory of the initial conditions occurs is 
not achieved in the experiments. It is therefore of value to use numerical simulation to 
estimate the properties of this similarity solution. A modified computational mesh has 
been used for this purpose. Extra coarsely zoned layers of thickness 0.15H with 10 
coarse zones were added to the top and bottom of the tanks to reduce the effect of the 
boundaries on the growth of the mixing zone. The horizontal cross-section was reduced 
to 0.8H x 0.8H; this size was considered sufficient as the overturning phase is not being 
computed. The mesh size used was 168 x 168 x 230. Calculations were run to 7 = 3.5 
when the mixing zone width 6 - H = 210 zones. As for the previous calculations the 
density ratio used as p1/p2 = 1.5. The initial random perturbation had standard 
deviation CT = 0.08Ax = 4 x lOP4H. 

Properties of the mixing zone are given at 7 = 3.25. Figure 15 shows profiles for 
plane-averaged values of the fluid- 1 volume fraction, the vertical and horizontal 
components of kinetic energy per unit mass and the molecular mixing fraction. The 
volume fraction profile is similar to those observed in the ~ experiments (see figure 5). 
The kinetic energy components are defined as k, = $~pw'//p (vertical) and kh = 
9 ( u 2  + v 2 ) / p  (horizontal). Both quantities show a peak in the middle of the mixing zone. 
The peak value for the vertical component is about three times the peak value for the 
horizontal component reflecting the anisotropy of the buoyancy-driven motions. The 
molecular mixing fraction, 8, is defined in the same way as in Youngs (1991), i.e. 

where CT' = (f, -L)2. The quantity 1 - 8 corresponds to the intensity of segregation 
used by Dankwerts (1952). It is observed that 8 is approximately uniform across the 
mixing zone but that there is some reduction in 8 with height. This is due to the slight 
deviation from the Boussinesq approximation at the density ratio of p1/p2 = 1.5 used 
in the simulations. In the middle of the mixing zone 8 is about 0.8. In the experiments, 



120 P. F. Linden, J.  M .  Redondo and D. L. 

fH 

0 -  

-fH 

J ;  

.~ - (4 

1.0 0 1 .o 
kl (peak k,) 

Youngs 

0 e 1 .o 

FIGURE 15. Plane-averaged quantities at 7 = 3.25: (a) fluid-1 volume fraction, f,; (b) vertical and 
horizontal components of kinetic energy per unit mass, k, and k,; (c) molecular mixing fraction, 8. 

1 .o 
0.9 1 
0.7 

0.4 

0.3 -I--- 

o.2 t K J P  
0.1 ------: = = a 

8 , I I 

0 0.01 0.02 0.03 0.04 0.05 

{ = A x / h ,  

FIGURE 16. Time variation of layer-integrated quantities : molecular mixing fraction, 0, vertical 
and horizontal components of kinetic energy; K, and K, and dissipation, D .  

the concentration fluctuation (r is defined somewhat differently. However, if the 
differences in definition are ignored, the observed values of amax - 0.25 (figure 8) imply 
a molecular mixing fraction of 13 = 1 -0.252/0.52 = 0.75, which is consistent with the 
computed value. 

The variation with time of quantities integrated over the whole mixing zone is shown 
in figure 16. Values are plotted against [ = Ax/h , ,  which is a measure of the numerical 
resolution of the mixing zone. As in Youngs (199 l), the molecular mixing fraction for 
the whole mixing zone is defined as 

As the mixing zone becomes better resolved 0 tends to increase. However, there is little 
difference in the values at = 0.02 (h, = 50 meshes) and [ = 0.01 (h,  = 100 meshes). 
Extrapolation to [ = 0 indicates 0 = 0.81 for the similarity solution. Also shown are 
the horizontal and vertical components at the kinetic energy, K, = I pw2 d V and 
Kh = $(Kx+K,), and the kinetic energy dissipated D. The quantities plotted are 
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FIGURE 17. Probability distribution functions for various horizontal layers at 7 = 3.25. 

divided by P, the loss of potential energy, which should equal D+K,+2Kh. For the 
similarity solution these ratios should approach constant values. The graphs show 
that an approximate self-similar state is reached after the bubble penetration, h, 
has reached 50 meshes. The best estimate of the energy balance for the similarity 
solution is 

dissipation of kinetic energy : 

vertical component of kinetic energy: 

horizontal component of kinetic energy: 

D I P  = 0.48, 

K,/P = 0.31, 

Kh/P = 0.1 1. 

These values are a little different to those quoted in Youngs (1991) because of the 
improved mesh resolutions. 

Figure 17 shows probability distribution functions for the fluid-1 volume fraction, 
f,, for various horizontal plane sections at scaled time 7 = 3.25. These give insight into 
the behaviour of a ‘bubble’ of the lighter fluid 2 as it rises through the mixing zone. 
At the bottom of the layer there is pure fluid 2, i.e. the p.d.f. consists of a &function 
at the origin. As z increases, the light fluid entrains some of the heavier fluid and the 
&function atf, = 0 is reduced (figures 17a and 17b). When the parcel of light fluid has 
reached the middle of the mixing zone the &function at the origin has disappeared 
(figure 17c). In fact, in the centre of the mixing zone there is little pure fluid 1 or pure 
fluid 2 and the p.d.f. has a peak at around& = 0.5, which agrees with the experimental 
results (figure 10). As the bubble of light fluid rises into the upper half of the mixing 
zone it entrains more and more of the heavier fluid (figures 17d and 17e). When the 
bubble has reached the point wheref, = 0.9 (figure 17e) the light fluid has become well 
mixed with heavy fluid. Again this is consistent with the experimental results. Probes 
at the top of the tank recorded the average value off lax to be about 0.3, i.e. the 
bubbles were mixed with at least 70 % of the heavier fluid. In the Boussinesq limit the 
p.d.f. forf, at + z  should be the same as the p.d.f. for 1 -f, at - 2 .  It is evident that, 
for the density ratio p1/p2 = 1.5 used in the simulation, there is some deviation from 
the Boussinesq limit. 

Finally the growth of the mixing zone width is considered. In order to compare with 
the observed ‘edge’ of the mixing zone the bubble penetration h, is in this case 
measured to the point where5 = 0.99. Figure 18 shows a plot of h, /H versus 72. The 
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FIGURE 18. Bubble penetration, h, versus time squared. The line drawn has slope a = 0.033. 

slope of the graph gives the growth coefficient a, defined by (3.2). It is evident from 
figure 16 that dissipation of both density fluctuations and kinetic energy is 
underestimated in the early part of the calculation when h, < 50 meshes. This 
discrepancy is attributed to the inability to resolve the inertial range. As a result a high 
value of a is obtained at the start of the calculation. When the resolution of the mixing 
zone improves, the growth rate slows down and the slope of the graph at the end of 
calculation gives a, = 0.033 for the similarity solution. Other similar calculations gave 
a, in the range 0.03 to 0.04. A similar trend has been noted by Glimm et al. (1990) in 
two-dimensional simulations of Rayleigh-Taylor instability using a front tracking 
method. In the early stage of the calculations, a was about 0.06; however, at a later 
stage, when the interface became highly convoluted and multiply connected, lower 
values, a = 0.038 to 0.044, were reported. The experiments of Read (1984) and Youngs 
(1989), which gave a - 0.06, used mainly immiscible fluids and surface tension may 
have inhibited fine-scale mixing thereby enhancing the growth of the mixing zone. 
There were no deliberately imposed perturbations in these earlier experiments. 
However, the meniscus on the walls of the tank perturbed the initial interface and this 
may have had some influence on the mixing rate. The present experimental results ( Q  5)  
give a - 0.044, if h, is measured to the point where = 0.95, which is in better 
agreement with the calculated values. 

The numerical estimates for a, of about 0.035 should be treated with some caution 
as linear variation of h, with T~ is only seen for a period when h, increases by a factor 
3. Finer-mesh calculations are needed for a more definitive estimate of a, and this is 
not possible with present computer resources. If a, is indeed as low as this then, 
according to the analysis described in 3 3, long-wave perturbations should enhance the 
mixing rate if a,/h > 0.001. In most experimental situations, controlling long- 
wavelength perturbations to this low level would be difficult. Hence complete loss of 
memory of the initial conditions in practical situations would not occur. This would 
have serious consequences for the application of turbulence models to Rayleigh-Taylor 
mixing problems, where model coefficients are adjusted to match the value of a. In the 
absence of a theoretical model relating a to the initial conditions, the only solution 
would be to adopt a pragmatic approach and adjust the turbulence model to give a 
typical observed value of a. 
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8. Conclusions 
In this paper we have presented a comparison between time-dependent, three- 

dimensional numerical calculations of Rayleigh-Taylor instability and laboratory 
experiments of the same flow. Neither the numerical calculations nor the laboratory 
experiments are ideal, and the resulting comparison is a compromise in which we have 
tried to bring the two studies as close together as possible. 

The numerical calculations are restricted by the fact that the smallest scales of the 
turbulent motion are not resolved. While the spectrum is consistent with a k-; decay, 
molecular mixing occurs on the smallest scales (for large Prandtl number) and so it is 
not obvious that the mixing process will be properly modelled by the numerical code. 

The experiments are limited by the initial disturbances imposed by the withdrawal 
of the plate. These clearly have a significant effect on the initial stages of development 
of the flow, and we present arguments to suggest that this influence may continue 
throughout the growth of the mixing region. An attempt was made to represent this 
perturbation in the numerical calculations by introducing a long-wave disturbance 
and some enhanced small-scale perturbations into the initial conditions. The form of 
these initial disturbances was chosen by rather crude estimates of the effect of the plate 
withdrawal on the experiments, and it does not model all aspects of this complex 
process. 

Generally, there is quite good agreement between the calculations and the 
experiments. We find that the motions are quite sensitive to the large scales produced 
when the barrier is removed, but that the amount of mixing is not. The details of the 
mixing process are changed in the early stages, but as three-dimensional small scales 
develop, the mixing is well represented in the model. 

We are currently making a number of improvements to the barrier design and to 
measurements of the initial conditions in the experiments in an attempt to match them 
more closely to the numerical calculations. 

This work is supported by the Ministry of Defence. 
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